Financing Projects with ICAP Revenues

Infocast Financing U.S. Power Conference

Seth G. Parker Vice President & Principal

November 10, 2004

LEVITAN & ASSOCIATES, INC.

Overview

- Background
 - Defining the problem / goals
 - * NYISO, ISO-NE, & PJM basics
 - Common and divergent objectives / approaches
- NYISO Mechanism
 - Implemented June 2003
 - Assumptions / methodology / prices
- ISO-NE Proposal
 - * Resolving design issues with FERC
 - Commencing Jan '06
- PJM Proposal
 - Ambitious and more complex
 - Timing uncertain
- Future Issues

Background

Problem

- Low & volatile market capacity values
 - Capacity prices fall off "cliff" beyond minimum requirement
- * Generators in financial distress
 - Recovery of fixed plant costs through energy margin
- Project financing model discredited
- Long-run resource adequacy concerns

Goals

- Increase capacity values & reduce volatility
- Provide price transparency to facilitate UCAP transactions
- Recognize marginal benefit of generation above minimum level
- Assure long-run resource adequacy

How are the three Northeast markets – NY, NE and PJM – trying to achieve these goals?

Background

- New York
 - ❖ 38,521 MW to serve 31,800 MW of load
 - Load pockets in NYC & LI
 - Significant transmission cable potential
- New England
 - * 31,752 MW for 25,735 MW of load
 - Expected 35% reserve margin will not materialize
 - Load pockets in SWCT and NEMA/Boston
 - Heavy dependence upon gas-fired generation
- PJM
 - ❖ 77,730 MW to serve 65,200 MW of load (Mid Atl & APS)
 - Deliverability requirement designed to avoid locational capacity needs
 - RTO expansion west (Com Ed, AEP, & DPL) increases size 70%
 - Probable RTO expansion south (DominionVP)

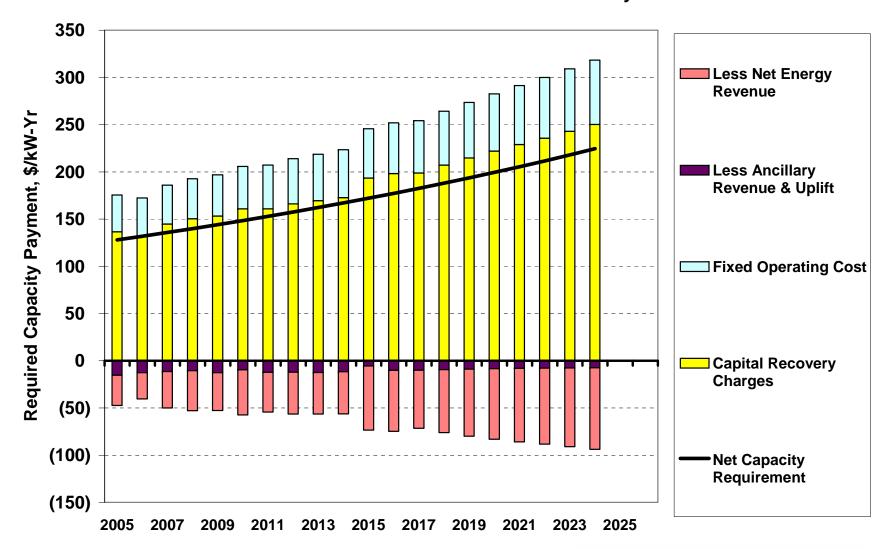
Background – Common Objectives / Approaches

- LSEs required to satisfy ICAP requirement
 - Self-supply
 - Bilateral contracts
 - Auctions
- Provide sufficient UCAP revenues to assure cost recovery
 - Capital cost
 - Fixed operating expenses
- Avoid "cliff" problem of vertical demand curve
 - Prices rise to capped / deficiency level if market "tight"
 - Prices fall to near-zero when market is long
- Recognize locational needs
- ICAP calculated at equilibrium for "rational" investments

Background – Divergent Objectives / Approaches

- Timing
 - Implemented (NYISO) and proposed (ISO-NE)
 - Under development (PJM) and in discussions (Cal ISO)
- Focus
 - Near-term (NYISO, ISO-NE)
 - Medium-term (PJM)
- Net energy & ancillary service revenues
 - Included (NYISO)
 - Excluded (ISO-NE)
- Marginal value of capacity above minimum
 - Steady (NYISO)
 - Segmented (ISO-NE, PJM)
- Operability goals
 - Incorporated (PJM)
 - Availability only (NYISO, ISO-NE)

NYISO – History


- NY DPS introduced demand curve concept in 2002
 - Improve long-run resource adequacy by valuing additional ICAP
 - More stable and less volatile prices
- NYISO stakeholder process
 - ❖ 2003 and 2004 reference values
- FERC Approval May 2003
- Implemented June 2003
 - Replaced deficiency auction
- Three capacity auctions
 - Capability Period six month (summer/winter) strips
 - Monthly remaining months in period
 - Spot Market (deficiency auction) demand curve mechanism

NYISO – Demand Curve

- Gas Turbine Selection
 - **❖** NYC & LI − 2 x LM6000 w/ Sprint
 - 96.0 MW, 9,650 Btu/kWh
 - Substantial NYPA and LIPA data
 - $ROS 2 \times 7FA$
 - 336.5 MW, 10,600 Btu/kWh
 - *Limited* real-world data
 - Both gas-fired, with SCR and CO catalysts
- Forecast Net Revenues
 - Dispatch simulation with zones and surrounding markets
 - Summer and winter GT performance
 - Other key assumptions
 - Load forecast
 - Supply forecast
 - Fuel costs

NYISO – GT Cash Flow Forecast

2005 Reference Plant Start Year -- New York City GT

NYISO – Demand Curve

Financing

- Parent company on-balance sheet
- * Capital costs reflect <u>rational</u> merchant project
- ❖ Debt 50% @ 7.5% 20-year
- * Equity 50% @ 12.5% (after-tax)

Levelization

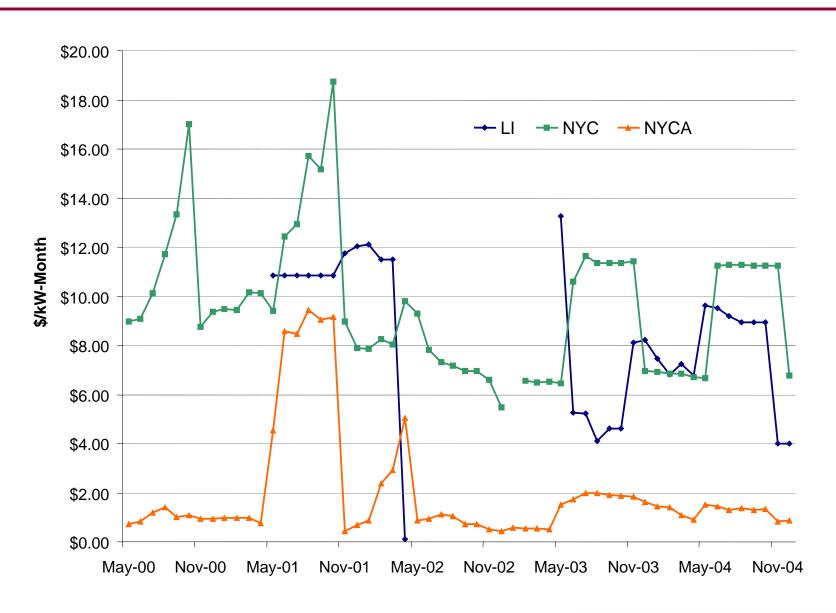
- ❖ 12.5% discount rate (after debt service)
- ❖ First year (nominal dollars) = reference value
- Escalation @ 3% in future years

Demand Curve Structure

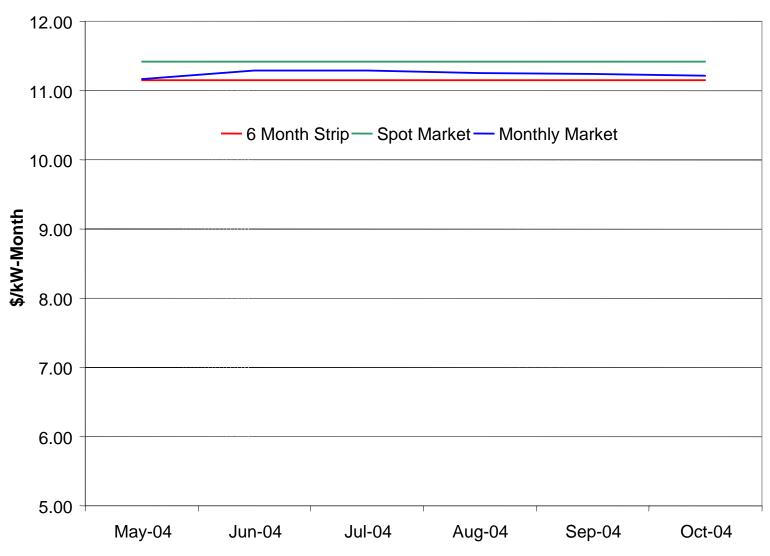
	Locational capacity req't	Zero crossing points
* NYC	80%	118%
* LI	95%	118%
* NYCA	118%	112%

NYISO – Demand Curve

Derivation of 2005 Reference Values


	<u>NYC</u>	<u>LI</u>	<u>NYCA</u>	
Capital Costs	\$114	\$108	\$201	millions
	\$1,189	\$1,126	\$599	/kW
Lev'd Cap Rev Req't	\$176	\$155	\$ 87	/kW-yr
Lev'd Net Revenues	<u>\$ 50</u>	<u>\$ 40</u>	<u>\$ 20</u>	/kW-yr
Net ICAP Req't	\$126	\$115	\$ 67	/kW-yr
Reference Points*	\$13.70	\$12.52	¢ 6.78	/kW-mo
	T T C C C	·	•	
*used in demand curves to	o meet ne	t ICAP a	nnual req	quirement

NYC and LI construction costs are high, and frame GTs in ROS offer significant economies of scale that lowers ICAP


NYISO – 2005 Capacity Rev. Requirements

NYISO – Capacity Prices

NYISO – NYC Auction Data

Price convergence among auctions is a good indicator

NYISO – NYCA Auction Data

Price convergence among auctions is a good indicator

ISO-NE

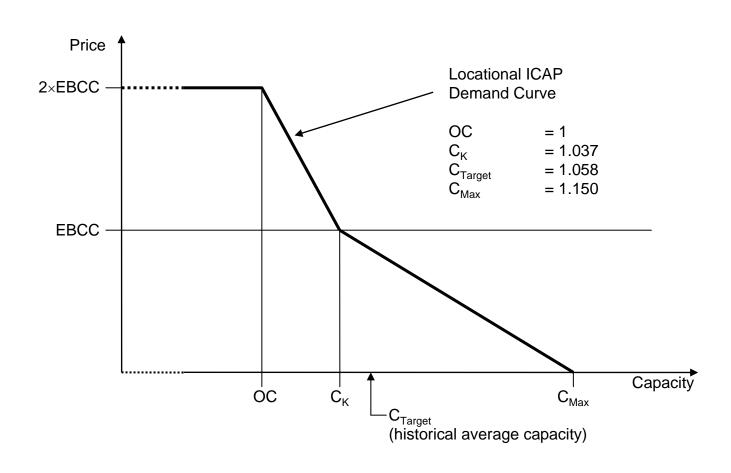
- Generators in trouble
 - ❖ NRG Devon, Middletown, Montville, Norwalk
 - PPL Wallingford
 - * Expected 35% reserve margin will <u>not</u> materialize
- Regulatory History
 - FERC approved SMD Sept '02
 - NRG filing for RMR Feb '03
 - Market-wide ICAP (with SMD) Mar '03
 - ❖ Apr '03 Order replaced RMR with PUSH mechanism
 - * Required locational ICAP mechanism by June '04

ISO-NE is following in NYISO's footsteps

ISO-NE Installed Capacity Prices

ISO-NE

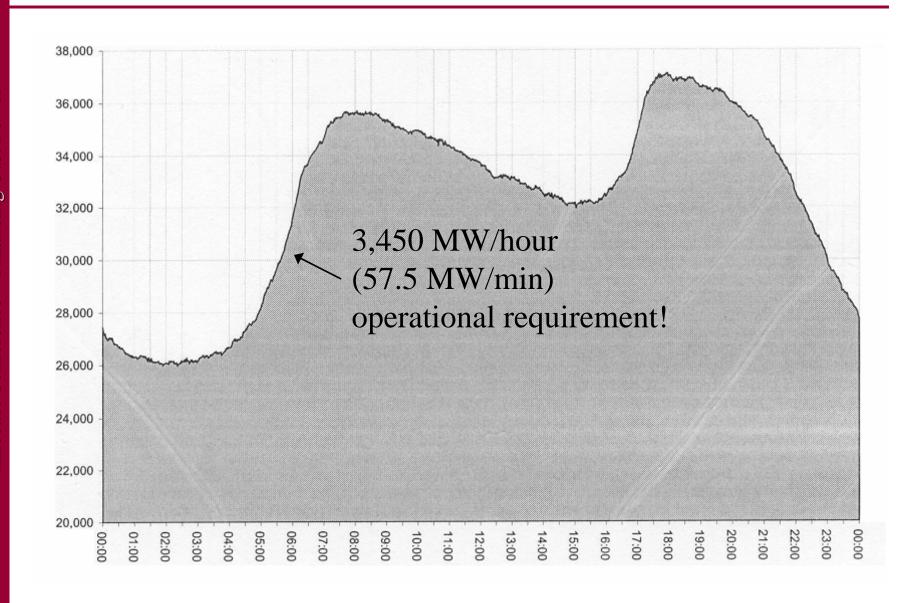
- ISO-NE Proposal Mar '04
 - ❖ Four capacity regions ME, CT, NEMA/Bos, and Rest-of-Pool
 - June '04 implementation with 5 year phase-in period
 - Downward-sloping demand curve
 - Transition payments to peakers in constrained locations
- FERC Response June '04
 - * You win some
 - Locational ICAP
 - Downward-sloping demand curve
 - * You lose some
 - SWCT zone
 - Demand curve parameters
 - Delay until Jan '06 w/o transition period
 - Inter-regional capacity transfer limits (CTL)

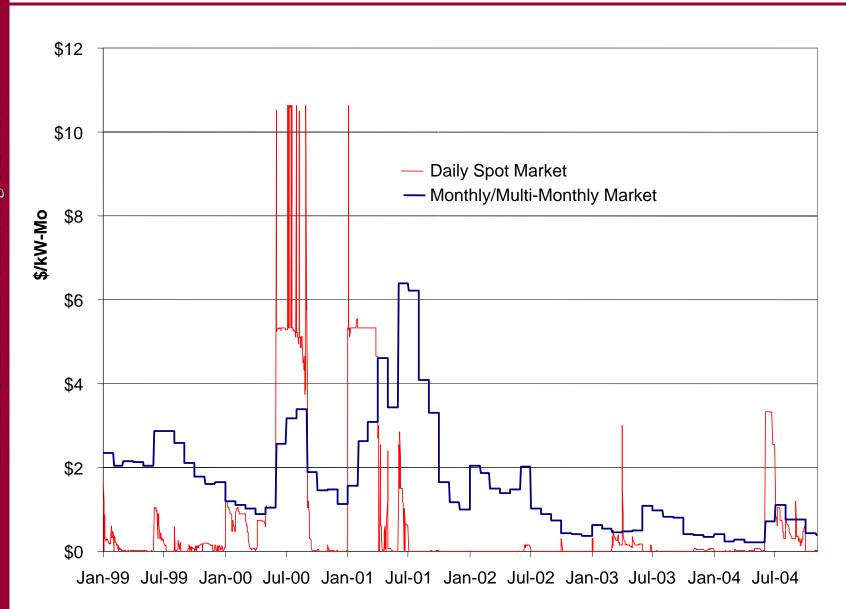

ISO-NE

- ISO-NE July/Aug '04 Filing
 - * EBCC is a single industrial frame GT
 - Recognized SWCT zone
 - Dual-fuel capable with SCR
 - ❖ 50% debt @ 7%, 50% equity @ 12%, 20 yrs
- Proposed costs and demand curve parameters

	<u>NEMA</u>	SWCT	R-CT	<u>Maine</u>	Rest-of-	<u>-Pool</u>
Cap Costs	\$105	\$105	\$102	\$95	\$97	million
	\$620	\$616	\$602	\$560	\$571	/kW
Lev'd Req't	\$97.87	\$99.16	\$96.52	\$87.22	\$92.34	/kW-yr
Demand curve	\$8.16	\$8.26	\$8.04	\$7.27	\$7.70	/kW-mo

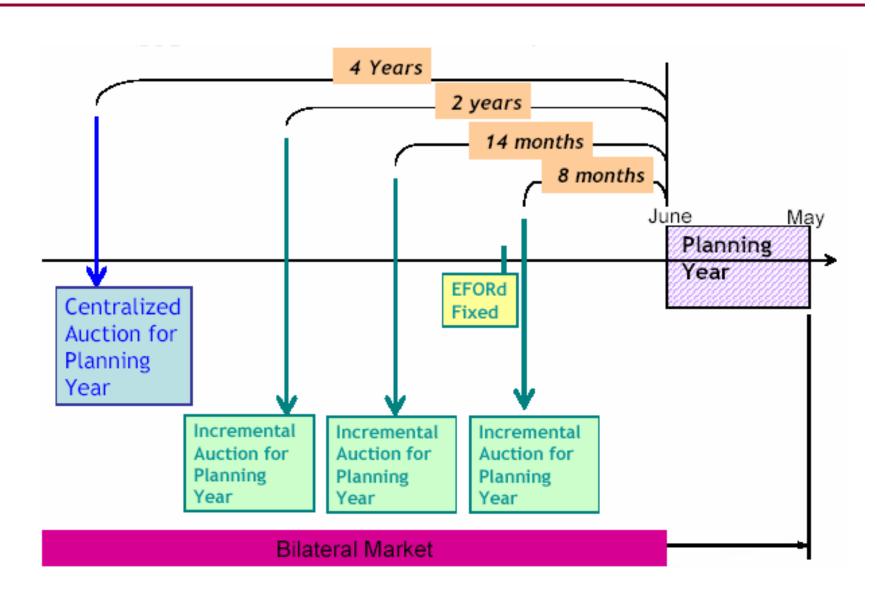
ISO-NE demand curve values may be above NYCA (\$67) value without summer / winter DMNC adjustments

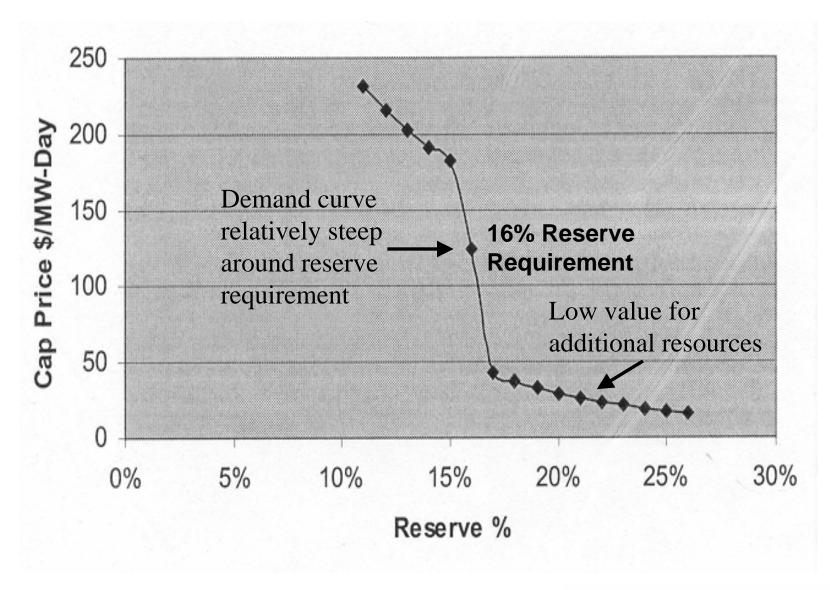

ISO-NE – Proposed Demand Curve


PJM – Existing System

- Universal deliverability implies single capacity market
- Monthly and daily capacity auctions
 - Uniform clearing price across market
 - * Rigid reserve criterion creates vertical demand requirement
 - Volatile prices led to market power and RAM / RPM discussions
- New Concerns
 - Risk of insufficient unit diversity to maintain reliability
 - Increased gas-fired capacity infrastructure concerns, price volatility
 - Declining load-following capability offered
 - Fewer units offering start/stop flexibility
 - Increasing need for 30 minute response

PJM – Typical Winter Load


PJM – Unforced Capacity Prices


PJM – Reliability Pricing Model

- Designed to promote overall system reliability
- Resource-specific to provide efficiency incentives
 - Locational demand curves
 - Product differentiated by location, type, and operational characteristics
- ho Deficiency charge = 2 x capacity clearing price
 - * Failure to deliver
 - Increased forced outage rate
- Annual capacity auctions
 - * Longer-term pricing signals to encourage bilateral contracts, investment
 - Load-following (ramp rate and start/stop) resource constraint
 - Supplemental reserves (30-minute) constraint
 - Clearing prices by optimization algorithm

PJM – RPM Auction Timing

PJM – Sample Demand Curve

PJM – Reference Values

- Key assumptions
 - ❖ Dual-fuel aero and frame GTs with SCR
 - ❖ 50% debt @ 7.0% 20 yr / 50% equity @ 12%
 - Fixed O&M costs included
- Costs and demand curve parameters

	2xLM6000		<u>2x7FA</u>
Cap Costs	\$79.6	\$156.5	million (2004)
	\$817	\$447	/kW
Lev'd Req't	\$125.71	\$66.64	/kW-yr (2006)
Dem Curve	\$344.40	\$182.58	/MW-day

Proposed PJM demand curve values are remarkably close to NYISO values

Future ICAP Issues

NYISO

- LIPA contracts (KeySpan, etc) makes market "thin"
- Neptune cable project would affect LI locational ICAP / supply
- ❖ NYC challenges SCS Astoria PPA, NYPA RFP
- ISO-NE
 - * CTL values will affect LBMPs
 - Transmission projects in SWCT and NEMA/Boston
- PJM
 - * RPM is ambitious and different than NYISO / ISO-NE
 - * RPM addresses unidentified load pockets
 - Timing and final design uncertain

True test of ICAP mechanism will be the "right" generator entry in the desired locations